Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

2,3,2',3'-Tetramethylbiphenyl

Wei Zheng,^a Hong-Jun Zhu,^a* Yi Qian^a and Yi-Zu Wu^b

^aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and ^bCollege of Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail: zhuhj@njut.edu.cn

Key indicators

Single-crystal X-ray study $T=293~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.002~\mathrm{\mathring{A}}$ R factor = 0.045 wR factor = 0.135 Data-to-parameter ratio = 16.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $C_{16}H_{18}$, was synthesized by a palladium-catalyzed boronic acid cross-coupling reaction. A crystal-lographic twofold axis passes through the mid-point of the C-C bond connecting the two rings. In the crystal structure, two fairly close $C-H\cdots\pi$ (arene) contacts appear to be the only significant intermolecular interactions.

Received 30 March 2006 Accepted 19 April 2006

Comment

The title compound, (I), was synthesized using the *tert*-butyl group as a positional protective group (Tashiro & Yamato, 1979). We obtained (I) in excellent yield using a Suzuki crosscoupling reaction (Miyaura, 2002). The crystal structure of the related 2,3,3',4'-tetramethylbiphenyl, (II), has already been reported (Robertson & Price, 2005).

The molecular structure of (I) is shown in Fig. 1. A crystallographic twofold axis passes through the mid-point of the C6-C6A bond. All bond distances and angles are as expected. The dihedral angle between the planes of the two benzene rings is $69.9~(3)^{\circ}$, compared with the value of $54.10~(7)^{\circ}$ in (II). The larger angle in (I) may be related to the greater steric hindrance from the two 2,2'-methyl groups in (I) compared with the two 2,3'-methyl groups in (II). The molecule adopts a *cis* configuration, with all the methyl groups on the same side of the biphenyl unit.

Figure 1 The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres. Atoms labelled with the suffix A are related by the symmetry operator $(1 - x, y, \frac{3}{3} - z)$.

© 2006 International Union of Crystallography All rights reserved There are no significant π - π stacking interactions, but two intermolecular weak $C-H\cdots\pi$ (arene) interactions may be effective in stabilizing the crystal structure (Table 1 and Fig. 2).

Experimental

The title compound was synthesized according to the procedure described by Robertson & Price (2005), using the same quantities but substituting 2,3-dimethylbromobenzene for 3,4-dimethylbromobenzene. Crystals were obtained by dissolving (I) (1.0 g) in petroleum ether (20 ml) and evaporating the solvent slowly at room temperature for about 25 d.

Crystal data

$C_{16}H_{18}$	Z = 4		
$M_r = 210$	$D_x = 1.120 \text{ Mg m}^{-3}$		
Monoclinic, C2/c	Mo $K\alpha$ radiation		
a = 13.536 (3) Å	$\mu = 0.06 \text{ mm}^{-1}$		
b = 6.5150 (13) Å	T = 293 (2) K		
c = 14.754 (3) Å	Block, colourless		
$\beta = 106.49 \ (3)^{\circ}$	$0.40 \times 0.30 \times 0.20 \text{ mm}$		
$V = 1247.6 (4) \mathring{\Delta}^3$			

Data collection

1221 independent reflections		
1007 reflections with $I > 2\sigma(I)$		
$R_{\rm int} = 0.034$		
$\theta_{\rm max} = 26.0^{\circ}$		
3 standard reflections		
every 200 reflections		
intensity decay: none		

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + 0.4P]$
$R[F^2 > 2\sigma(F^2)] = 0.045$	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.135$	$(\Delta/\sigma)_{\text{max}} = 0.001$
S = 1.05	$\Delta \rho_{\text{max}} = 0.16 \text{ e Å}^{-3}$
1221 reflections	$\Delta \rho_{\min} = -0.14 \text{ e Å}^{-3}$
74 parameters	Extinction correction: SHELXL97
H-atom parameters constrained	(Sheldrick, 1997)
	Extinction coefficient: 0.087 (8)

Table 1 Hydrogen-bond geometry (Å, °).

D-H···A	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$ \begin{array}{c} C1 - H1B \cdots Cg1^{i} \\ C4 - H4A \cdots Cg1^{ii} \end{array} $	0.96	2.85	3.729 (2)	152
	0.93	2.90	3.7429 (18)	150

Symmetry codes: (i) $x + \frac{3}{2}$, $y + \frac{1}{2}$, z + 1; (ii) x + 1, -y, $z + \frac{1}{2}$.

H atoms were placed in calculated postions, with C-H=0.93 or 0.96~Å, and were included in the refinement in the riding-model

Figure 2

Part of the crystal structure of (I), with dashed lines indicating intermolecular $C-H\cdots\pi$ (arene) interactions. Only H atoms involved in the interactions are shown. [Symmetry codes: (#) $\frac{3}{2} + x, \frac{1}{2} + y, 1 + z$; (*) $1 + x, -y, \frac{1}{2} + z$.]

approximation, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$, or $1.5 U_{\rm eq}({\rm C})$ for methyl H. Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

The authors thank the Centre for Testing and Analysis, Nanjing University, for support.

References

Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Enraf-Nonius (1985). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Miyaura, N. (2002). Editor. Topics in Current Chemistry, Vol. 219, pp. 11–59. New York: Springer-Verlag.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). *Acta Cryst.* A**24**, 351–359.

Robertson, A. J. & Price, D. J. (2005). *Acta Cryst*. E**61**, o2610–o2612. Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.

Tashiro, M. & Yamato, T. (1979). J. Org. Chem. 44, 3037-3041.