Structure Reports

Online
ISSN 1600-5368

Wei Zheng, ${ }^{\text {a }}$ Hong-Jun Zhu, ${ }^{\text {a }}{ }^{*}$ Yi Qian ${ }^{\mathrm{a}}$ and $\mathrm{Yi}-\mathrm{Zu} \mathbf{W u}{ }^{\text {b }}$

${ }^{\text {a }}$ Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail: zhuhj@njut.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.045$
$w R$ factor $=0.135$
Data-to-parameter ratio $=16.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2,3,2', $\mathbf{3}^{\prime}$-Tetramethylbiphenyl

The title compound, $\mathrm{C}_{16} \mathrm{H}_{18}$, was synthesized by a palladiumcatalyzed boronic acid cross-coupling reaction. A crystallographic twofold axis passes through the mid-point of the C C bond connecting the two rings. In the crystal structure, two fairly close $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) contacts appear to be the only significant intermolecular interactions.

Comment

The title compound, (I), was synthesized using the tert-butyl group as a positional protective group (Tashiro \& Yamato, 1979). We obtained (I) in excellent yield using a Suzuki crosscoupling reaction (Miyaura, 2002). The crystal structure of the related $2,3,3^{\prime}, 4^{\prime}$-tetramethylbiphenyl, (II), has already been reported (Robertson \& Price, 2005).

(I)

The molecular structure of (I) is shown in Fig. 1. A crystallographic twofold axis passes through the mid-point of the C $6-\mathrm{C} 6 A$ bond. All bond distances and angles are as expected. The dihedral angle between the planes of the two benzene rings is $69.9(3)^{\circ}$, compared with the value of 54.10 (7) ${ }^{\circ}$ in (II). The larger angle in (I) may be related to the greater steric hindrance from the two $2,2^{\prime}$-methyl groups in (I) compared with the two $2,3^{\prime}$-methyl groups in (II). The molecule adopts a cis configuration, with all the methyl groups on the same side of the biphenyl unit.

Figure 1
The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres. Atoms labelled with the suffix A are related by the symmetry operator $(1-x, y$, $\frac{3}{2}-z$).

There are no significant $\pi-\pi$ stacking interactions, but two intermolecular weak $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions may be effective in stabilizing the crystal structure (Table 1 and Fig. 2).

Experimental

The title compound was synthesized according to the procedure described by Robertson \& Price (2005), using the same quantities but substituting 2,3-dimethylbromobenzene for 3,4-dimethylbromobenzene. Crystals were obtained by dissolving (I) (1.0 g) in petroleum ether $(20 \mathrm{ml})$ and evaporating the solvent slowly at room temperature for about 25 d .

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{16} \mathrm{H}_{18} & Z=4 \\
M_{r}=210 & D_{x}=1.120 \mathrm{Mg} \mathrm{~m}^{-3} \\
\text { Monoclinic, } C 2 / c & \text { Mo } K \alpha \text { radiation }^{2} \\
a=13.536(3) \AA & \mu=0.06 \mathrm{~mm}^{-1} \\
b=6.5150(13) \AA & T=293(2) \mathrm{K} \\
c=14.754(3) \AA & \text { Block, colourless } \\
\beta=106.49(3)^{\circ} & 0.40 \times 0.30 \times 0.20 \mathrm{~mm} \\
V=1247.6(4) \AA^{3} &
\end{array}
$$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.975, T_{\text {max }}=0.988$
2438 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.135$
$S=1.05$
1221 reflections
74 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+0.4 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
1221 independent reflections
1007 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=26.0^{\circ}$
3 standard reflections
every 200 reflections intensity decay: none
$\Delta \rho_{\text {max }}=0.16 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.14 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.087 (8)

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 B \cdots C g 1^{\mathrm{i}}$	0.96	2.85	$3.729(2)$	152
$\mathrm{C}^{\mathrm{H}}-\mathrm{H} 4 A \cdots \mathrm{Cg}^{1 i}$	0.93	2.90	$3.7429(18)$	150

Symmetry codes: (i) $x+\frac{3}{2}, y+\frac{1}{2}, z+1$; (ii) $x+1,-y, z+\frac{1}{2}$.
H atoms were placed in calculated postions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA$, and were included in the refinement in the riding-model

Figure 2
Part of the crystal structure of (I), with dashed lines indicating intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions. Only H atoms involved in the interactions are shown. [Symmetry codes: (\#) $\frac{3}{2}+x, \frac{1}{2}+y, 1+z ;\left({ }^{*}\right)$ $1+x,-y, \frac{1}{2}+z$.]
approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$, or $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H.
Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

The authors thank the Centre for Testing and Analysis, Nanjing University, for support.

References

Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Enraf-Nonius (1985). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Miyaura, N. (2002). Editor. Topics in Current Chemistry, Vol. 219, pp. 11-59. New York: Springer-Verlag.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Robertson, A. J. \& Price, D. J. (2005). Acta Cryst. E61, o2610-o2612.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tashiro, M. \& Yamato, T. (1979). J. Org. Chem. 44, 3037-3041.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

